問題番号	問い	2次関数	y =	² - 5	+ 6	と x 軸との共有点の座	標を求めなさい。
1 8	正解	(2,	0),(3,0)			
40		/ - -1					

	誤答例	つまずき原因	分析と解消
1	無解答	共有点の求め方を理解していない。	5 3ページ 【18 - 1】
2	(2,3)	方程式の解を,座標と間違えた。	5 3ページ 【18 - 1】
3	x = 2 , 3	方程式の解を求めてしまった。	5 3ページ 【1 8 - 1】
4	(-2,0),(-3,0)	(- 2)(- 3)= 0より, = - 2,-3 と間違えた。 または,因数分解を間違えた。	5 4ページ 【18 - 2】
5	(-1,0),(6,0)	因数分解を間違えた。	5 4ページ 【18 - 2】

よって, 軸との共有点の座標は,(2,0),(3,0)となる。

|練習|次の2次関数とx軸との共有点の座標を求めなさい。

$$(1)$$
 $y = x^2 - 5x - 6$

(1)
$$y = x^2 - 5x - 6$$
 (2) $y = x^2 - 6x - 5$

(3)
$$y = 4x^2 - 4x + 1$$
 (4) $y = x^2 - 4x + 5$

$$(4)$$
 $y = x^2 - 4x + 5$

解答
$$(1)$$
 $(-1,0)$, $(6,0)$ (2) $(3-\sqrt{14},0)$, $(3+\sqrt{14},0)$ (3) $\left(\frac{1}{2},0\right)$ (4) 共有点はない

$$(3)$$
 $\left[\frac{1}{2}, 0\right]$ (4) 共有点はない

誤答例1,2,3のつまずきの分析【18-1】

軸との共有点とはどのような点であり、どうすれば求められるかを理解していないため、無解答であったり、表し方を間違えたと思われます。

つまずきの解消

軸との共有点とは

$$y = x^2 - 5x + 6$$
のグラフをかいてみましょう。
 $y = \left(x - \frac{5}{2}\right)^2 - \frac{1}{4}$ と変形できるので,グラフ

は右図のようになります。

軸との共有点とは、このグラフがx軸と交わっている(接する場合もあります)点のことです。 グラフより 軸との共有点が2個あることがわかります。

また,このグラフが通る点を $y=x^2-5x+6$ の にいくつか値を代入して調べてみると,

$$x = 0$$
 のとき $y = 0^2 - 5 \times 0 + 6 = 6$

$$x=1$$
 のとき $y=1^2-5 \times 1+6=2$

$$x = 2$$
 のとき $y = 2^2 - 5 \times 2 + 6 = 0$

$$x = 3$$
 のとき $y = 3^2 - 5 \times 3 + 6 = 0$

$$x = 4$$
 のとき $y = 4^2 - 5 \times 4 + 6 = 2$

$$x = 5$$
 のとき $y = 5^2 - 5 \times 5 + 6 = 6$

となって、これを表にしてみると、

	0	1	2 3	4	5
У	6	2	0 0	2	6

となります。

軸上の点は y 座標が 0 なので , 軸との共有点の座標は ,(2 , 0),(3 , 0) であることがわかります。

これを計算で求めるにはどうしたらよいでしょうか。

 $y = ^2 - 5 + 6$ の に , 2 と 3 を代入したら y の値が 0 になり , それが 軸との 共有点になります。逆に y の値が 0 になるような の値を探すことが , 軸との共有点 の 座標を求めることになります。

どんな の値を代入すれば ²-5 +6 の値が0になるのかを求めるには,

²-5 +6=0 となる の値を求めること,つまりこの2次方程式を解けばよいのです。

2次方程式の解法については,つまずきの分析【18-2】(54ページ)を参照してください。

誤答例4,5のつまずきの分析【18-2】

2次方程式の解き方をよく理解していないので、軸との共有点の座標の値を間違えたと考えられます。

つまずきの解消

2次方程式の解き方

すべての項を左辺に移項して簡単にしたとき,左辺が の 2 次式になる方程式 $a^2+b^2+c=0$

の形になる方程式を, についての2次方程式といいます。

2次方程式を成り立たせる の値を,その2次方程式の解といい,すべての解を求めることを,その2次方程式を解くといいます。

2 つの数 A , B について , 次のことがいえる。 AB=0 ならば , A=0 または B=0

2次方程式を解くには、このことを利用します。左辺の2次式を1次式と1次式の積に因数分解することができれば、その2次方程式は容易に解くことができます。

つまり,(-)(-)=0 ならば, - =0 または - =0 なので = または =

となり,解が求められます。

本問の場合は, ²-5 +6=0 を解くのだから,左辺を因数分解して, (-2)(-3)=0 -2=0 または -3=0 =2 または =3

となり、解が求められます。

因数分解について

1つの式をいくつかの単項式や多項式の積の形に表すとき、その1つ1つの式を、もとの式の因数といいます。

多項式を因数の積の形に表すことを、その多項式を因数分解するといいます。因数分解は、積の展開を逆にみたものです。

2-5 +6 の因数分解のしかたを考えてみましょう。

因数分解は積の展開を逆にみたものですから,式の形に注目すると, 2 -5 + 6 は,次のように因数分解できます。

2
 - 5 + 6 = (+ a)(+ b)

ここで右辺を展開すると、

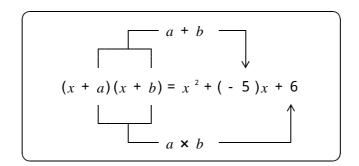
$$(+a)(+b) = ^2 + (a+b) + ab$$

であるから、

$$a + b = -5$$
, $ab = 6$

となるようなa,bを見つかればよいのです。

すなわち,和が-5,積が6であるa,bを求めればよいことがわかります。



和が, - 5 , 積が6 である2つの数を右のような表で考えると,

その2つの数は,-2と-3であることが分かります。

$$a = -2$$
 , $b = -3$ とおくと ,

2
 - 5 + 6 = (- 2)(- 3)

と因数分解できます。

	積:	和		
	1	٢	6	7
	2	٢	3	5
-	1	٢	- 6	- 7
-	2	٤	- 3	- 5

因数分解の公式

$$a^{2} + (a + b) + ab = (+ a)(+ b)$$